skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "White, Andrew D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we investigate the question: do code-generating large language models know chemistry? Our results indicate, mostly yes. To evaluate this, we introduce an expandable framework for evaluating chemistry knowledge in these models, through prompting models to solve chemistry problems posed as coding tasks. To do so, we produce a benchmark set of problems, and evaluate these models based on correctness of code by automated testing and evaluation by experts. We find that recent LLMs are able to write correct code across a variety of topics in chemistry and their accuracy can be increased by 30 percentage points via prompt engineering strategies, like putting copyright notices at the top of files. Our dataset and evaluation tools are open source which can be contributed to or built upon by future researchers, and will serve as a community resource for evaluating the performance of new models as they emerge. We also describe some good practices for employing LLMs in chemistry. The general success of these models demonstrates that their impact on chemistry teaching and research is poised to be enormous. 
    more » « less
  2. In computational physics, chemistry, and biology, the implementation of new techniques in shared and open-source software lowers barriers to entry and promotes rapid scientific progress. However, effectively training new software users presents several challenges. Common methods like direct knowledge transfer and in-person workshops are limited in reach and comprehensiveness. Furthermore, while the COVID-19 pandemic highlighted the benefits of online training, traditional online tutorials can quickly become outdated and may not cover all the software’s functionalities. To address these issues, here we introduce “PLUMED Tutorials,” a collaborative model for developing, sharing, and updating online tutorials. This initiative utilizes repository management and continuous integration to ensure compatibility with software updates. Moreover, the tutorials are interconnected to form a structured learning path and are enriched with automatic annotations to provide broader context. This paper illustrates the development, features, and advantages of PLUMED Tutorials, aiming to foster an open community for creating and sharing educational resources. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026
  3. Co-assembly of oppositely charged peptides (CoOP) links intermolecular interactions and material properties. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Inferring the input parameters of simulators from observations is a crucial challenge with applications from epidemiology to molecular dynamics. Here we show a simple approach in the regime of sparse data and approximately correct models, which is common when trying to use an existing model to infer latent variables with observed data. This approach is based on the principle of maximum entropy (MaxEnt) and provably makes the smallest change in the latent joint distribution to fit new data. This method requires no likelihood or model derivatives and its fit is insensitive to prior strength, removing the need to balance observed data fit with prior belief. The method requires the ansatz that data is fit in expectation, which is true in some settings and may be reasonable in all with few data points. The method is based on sample reweighting, so its asymptotic run time is independent of prior distribution dimension. We demonstrate this MaxEnt approach and compare with other likelihood-free inference methods across three systems: a point particle moving in a gravitational field, a compartmental model of epidemic spread and finally molecular dynamics simulation of a protein. 
    more » « less
  6. null (Ed.)
    Inferring molecular structure from Nuclear Magnetic Resonance (NMR) measurements requires an accurate forward model that can predict chemical shifts from 3D structure. Current forward models are limited to specific molecules like proteins and state-of-the-art models are not differentiable. Thus they cannot be used with gradient methods like biased molecular dynamics. Here we use graph neural networks (GNNs) for NMR chemical shift prediction. Our GNN can model chemical shifts accurately and capture important phenomena like hydrogen bonding induced downfield shift between multiple proteins, secondary structure effects, and predict shifts of organic molecules. Previous empirical NMR models of protein NMR have relied on careful feature engineering with domain expertise. These GNNs are trained from data alone with no feature engineering yet are as accurate and can work on arbitrary molecular structures. The models are also efficient, able to compute one million chemical shifts in about 5 seconds. This work enables a new category of NMR models that have multiple interacting types of macromolecules. 
    more » « less
  7. null (Ed.)